Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 922: 171275, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428599

RESUMO

With mounting global concerns about jellyfish outbreaks, monitoring their occurrence remains challenging. Tapping into the wealth of digital data that internet users share online, which includes reports of jellyfish sightings, may provide an alternative or complement to more conventional expert-based or citizen science monitoring. Here, we explore digital footprints as a data source to monitor jellyfish outbreaks along the Israeli Mediterranean coast. We compiled jellyfish sighting data for the period 2011-2022 from multiple platforms, including leading social media platforms, searches in the Google search engine, and Wikipedia page views. Employing time series analysis, cross-correlation, and various evaluation metrics for presence/absence data, we compared weekly data from three sources: digital footprints, citizen science, and traditional expert-based field monitoring. Consistent seasonal patterns emerge across datasets, with notable correlations, particularly in jellyfish abundance. The cross-correlation between digital footprint and citizen science data exceeds >0.7, with Twitter and Instagram showing the highest correlation. Citizen science data often precedes digital footprints by up to one week. Correlation with traditional, expert-based field monitoring is limited as a result of limited data availability. Digital footprints demonstrate substantial agreement with the other data sources regarding jellyfish presence/absence and major outbreaks, especially for data from Wikipedia, Twitter, and Instagram. Overall, we highlight digital footprint data as a reliable, cost-effective tool for passive monitoring of jellyfish outbreaks, which can aid characterization in data-scarce coastal regions, including retrospective assessment. Transferring and scaling up the proposed approach should consider data accessibility as well as platform relative popularity and usage in the regions under investigation.


Assuntos
Cnidários , Cifozoários , Animais , Humanos , Israel , Estudos Retrospectivos , Surtos de Doenças
2.
Front Microbiol ; 13: 867694, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464964

RESUMO

Marine microbial communities vary seasonally and spatially, but these two factors are rarely addressed together. In this study, the temporal and spatial patterns of the bacterial and archaeal community were studied along a coast-to-offshore transect in the Eastern Mediterranean Sea (EMS) over six cruises, in three seasons of 2 consecutive years. Amplicon sequencing of 16S rRNA genes and transcripts was performed to determine presence and activity, respectively. The ultra-oligotrophic status of the Southeastern Mediterranean Sea was reflected in the microbial community composition dominated by oligotrophic bacterial groups such as SAR11, even at the most coastal station sampled, throughout the year. Seasons significantly affected the microbial communities, explaining more than half of the observed variability. However, the same few taxa dominated the community over the 2-year sampling period, varying only in their degree of dominance. While there was no overall effect of station location on the microbial community, the most coastal site (16 km offshore) differed significantly in community structure and activity from the three further offshore stations in early winter and summer. Our data on the microbial community compositions and their seasonality support previous notions that the EMS behaves like an oceanic gyre.

3.
Sci Rep ; 11(1): 22120, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764298

RESUMO

The outbreak of the Coronavirus disease 2019 (COVID-19), and the drastic measures taken to mitigate its spread through imposed social distancing, have brought forward the need to better understand the underlying factors controlling spatial distribution of human activities promoting disease transmission. Focusing on results from 17,250 epidemiological investigations performed during early stages of the pandemic outbreak in Israel, we show that the distribution of carriers of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes COVID-19, is spatially correlated with two satellite-derived surface metrics: night light intensity and landscape patchiness, the latter being a measure to the urban landscape's scale-dependent spatial heterogeneity. We find that exposure to SARS-CoV-2 carriers was significantly more likely to occur in "patchy" parts of the city, where the urban landscape is characterized by high levels of spatial heterogeneity at relatively small, tens of meters scales. We suggest that this spatial association reflects a scale-dependent constraint imposed by the city's morphology on the cumulative behavior of the people inhabiting it. The presented results shed light on the complex interrelationships between humans and the urban landscape in which they live and interact, and open new avenues for implementation of multi-satellite data in large scale modeling of phenomena centered in urban environments.


Assuntos
COVID-19/epidemiologia , Cidades/epidemiologia , Atividades Humanas , Humanos , Israel/epidemiologia , SARS-CoV-2/isolamento & purificação , Imagens de Satélites , População Urbana
4.
Environ Microbiol ; 23(8): 4295-4308, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34036706

RESUMO

In the oceans and seas, environmental conditions change over multiple temporal and spatial scales. Here, we ask what factors affect the bacterial community structure across time, depth and size fraction during six seasonal cruises (2 years) in the ultra-oligotrophic Eastern Mediterranean Sea. The bacterial community varied most between size fractions (free-living (FL) vs. particle-associated), followed by depth and finally season. The FL community was taxonomically richer and more stable than the particle-associated (PA) one, which was characterized by recurrent 'blooms' of heterotrophic bacteria such as Alteromonas and Ralstonia. The heterotrophic FL and PA communities were also correlated with different environmental parameters: the FL population correlated with depth and phytoplankton, whereas PA bacteria were correlated primarily with the time of sampling. A significant part of the variability in community structure could, however, not be explained by the measured parameters. The metabolic potential of the PA community, predicted from 16S rRNA amplicon data using PICRUSt, was enriched in pathways associated with the degradation and utilization of biological macromolecules, as well as plastics, other petroleum products and herbicides. The FL community was enriched in predicted pathways for the metabolism of inositol phosphate, a potential phosphorus source, and of polycyclic aromatic hydrocarbons.


Assuntos
Bactérias , Petróleo , Bactérias/genética , Mar Mediterrâneo , Fitoplâncton , RNA Ribossômico 16S/genética
5.
Environ Sci Pollut Res Int ; 26(12): 11940-11950, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30825122

RESUMO

Dust storms affect the primary productivity of the ocean by providing necessary micronutrients to the surface layer. One such dust storm during March 2012 led to a substantial reduction in visibility and enhancement in aerosol optical depth (AOD) up to ~ 0.8 (AOD increased from 0.1 to 0.9) over the Arabian Sea. We explored the possible effects and mechanisms through which this particular dust storm could impact the ocean's primary productivity (phytoplankton concentration), using satellite-borne remote sensors and reanalysis model data (2003-2016). The climatological analyses revealed anomalous March 2012 in terms of dust deposition and enhancement in phytoplankton concentration in the month of March during 2003-2016 over this region. The studied dust storm accounts for increase in the daily average surface dust deposition rate from ~ 3 to ~53 mg m-2 day-1, which is followed by a significant enhancement in the chlorophyll-a (Chl_a) concentration (~ 2 to ~9 mg m-3). We show strong association between a dust storm and an event of anomalously high biological production (with a 4-day forward lag) in the Arabian Sea. We suggest that the increase in biological production results from the superposition of two complementary processes (deposition of atmospheric nutrients and deepening of the mixed layer due to dust-induced sea surface temperature cooling) that enhance nutrient availability in the euphotic layer.


Assuntos
Poluentes Atmosféricos/análise , Poeira/análise , Monitoramento Ambiental , Fitoplâncton/fisiologia , Aerossóis/análise , Clorofila/análogos & derivados , Clorofila A , Fitoplâncton/crescimento & desenvolvimento , Estações do Ano
6.
iScience ; 10: 192-202, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30529951

RESUMO

Clouds control much of the Earth's energy and water budgets. Aerosols, suspended in the atmosphere, interact with clouds and affect their properties. Recent studies have suggested that the aerosol effect on warm convective cloud systems evolve in time and eventually approach a steady state for which the overall effects of aerosols can be considered negligible. Using numerical simulations, it was estimated that the time needed for such cloud fields to approach this state is >24 hr. These results suggest that the typical cloud field lifetime is an important parameter in determining the total aerosol effect. Here, analyzing satellite observations and reanalysis data (with the aid of numerical simulations), we show that the characteristic timescale of warm convective cloud fields is less than 12 hr. Such a timescale implies that these clouds should be regarded as transient-state phenomena and therefore can be highly susceptible to changes in aerosol properties.

7.
Nat Microbiol ; 3(5): 537-547, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29531367

RESUMO

Marine phytoplankton account for approximately half of global primary productivity 1 , making their fate an important driver of the marine carbon cycle. Viruses are thought to recycle more than one-quarter of oceanic photosynthetically fixed organic carbon 2 , which can stimulate nutrient regeneration, primary production and upper ocean respiration 2 via lytic infection and the 'virus shunt'. Ultimately, this limits the trophic transfer of carbon and energy to both higher food webs and the deep ocean 2 . Using imagery taken by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite, along with a suite of diagnostic lipid- and gene-based molecular biomarkers, in situ optical sensors and sediment traps, we show that Coccolithovirus infections of mesoscale (~100 km) Emiliania huxleyi blooms in the North Atlantic are coupled with particle aggregation, high zooplankton grazing and greater downward vertical fluxes of both particulate organic and particulate inorganic carbon from the upper mixed layer. Our analyses captured blooms in different phases of infection (early, late and post) and revealed the highest export flux in 'early-infected blooms' with sinking particles being disproportionately enriched with infected cells and subsequently remineralized at depth in the mesopelagic. Our findings reveal viral infection as a previously unrecognized ecosystem process enhancing biological pump efficiency.


Assuntos
Carbono/metabolismo , Haptófitas/virologia , Phycodnaviridae/fisiologia , Ciclo do Carbono , Cadeia Alimentar , Haptófitas/fisiologia , Oceanos e Mares , Fitoplâncton/fisiologia , Fitoplâncton/virologia , Tecnologia de Sensoriamento Remoto , Imagens de Satélites , Água do Mar/virologia
8.
ISME J ; 12(3): 704-713, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29335637

RESUMO

The cosmopolitan coccolithophore Emiliania huxleyi is a unicellular eukaryotic alga that forms vast blooms in the oceans impacting large biogeochemical cycles. These blooms are often terminated due to infection by the large dsDNA virus, E. huxleyi virus (EhV). It was recently established that EhV-induced modulation of E. huxleyi metabolism is a key factor for optimal viral infection cycle. Despite the huge ecological importance of this host-virus interaction, the ability to assess its spatial and temporal dynamics and its possible impact on nutrient fluxes is limited by current approaches that focus on quantification of viral abundance and biodiversity. Here, we applied a host and virus gene expression analysis as a sensitive tool to quantify the dynamics of this interaction during a natural E. huxleyi bloom in the North Atlantic. We used viral gene expression profiling as an index for the level of active infection and showed that the latter correlated with water column depth. Intriguingly, this suggests a possible sinking mechanism for removing infected cells as aggregates from the E. huxleyi population in the surface layer into deeper waters. Viral infection was also highly correlated with induction of host metabolic genes involved in host life cycle, sphingolipid, and antioxidant metabolism, providing evidence for modulation of host metabolism under natural conditions. The ability to track and quantify defined phases of infection by monitoring co-expression of viral and host genes, coupled with advance omics approaches, will enable a deeper understanding of the impact that viruses have on the environment.


Assuntos
Carbono/metabolismo , Vírus de DNA/metabolismo , Haptófitas/metabolismo , Haptófitas/virologia , Biodiversidade , Vírus de DNA/genética , Vírus de DNA/isolamento & purificação , Eutrofização , Haptófitas/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Oceanos e Mares
9.
Ann Rev Mar Sci ; 10: 99-119, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28961072

RESUMO

The well-lit upper layer of the open ocean is a dynamical environment that hosts approximately half of global primary production. In the remote parts of this environment, distant from the coast and from the seabed, there is no obvious spatially fixed reference frame for describing the dynamics of the microscopic drifting organisms responsible for this immense production of organic matter-the phytoplankton. Thus, a natural perspective for studying phytoplankton dynamics is to follow the trajectories of water parcels in which the organisms are embedded. With the advent of satellite oceanography, this Lagrangian perspective has provided valuable information on different aspects of phytoplankton dynamics, including bloom initiation and termination, spatial distribution patterns, biodiversity, export of carbon to the deep ocean, and, more recently, bottom-up mechanisms that affect the distribution and behavior of higher-trophic-level organisms. Upcoming submesoscale-resolving satellite observations and swarms of autonomous platforms open the way to the integration of vertical dynamics into the Lagrangian view of phytoplankton dynamics.


Assuntos
Fitoplâncton/fisiologia , Imagens de Satélites , Biodiversidade , Carbono , Ecossistema , Oceanografia/métodos
10.
Nat Commun ; 8: 14868, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361926

RESUMO

Spatial characteristics of phytoplankton blooms often reflect the horizontal transport properties of the oceanic turbulent flow in which they are embedded. Classically, bloom response to horizontal stirring is regarded in terms of generation of patchiness following large-scale bloom initiation. Here, using satellite observations from the North Pacific Subtropical Gyre and a simple ecosystem model, we show that the opposite scenario of turbulence dispersing and diluting fine-scale (∼1-100 km) nutrient-enriched water patches has the critical effect of regulating the dynamics of nutrients-phytoplankton-zooplankton ecosystems and enhancing accumulation of photosynthetic biomass in low-nutrient oceanic environments. A key factor in determining ecological and biogeochemical consequences of turbulent stirring is the horizontal dilution rate, which depends on the effective eddy diffusivity and surface area of the enriched patches. Implementation of the notion of horizontal dilution rate explains quantitatively plankton response to turbulence and improves our ability to represent ecological and biogeochemical processes in oligotrophic oceans.


Assuntos
Ecossistema , Eutrofização/fisiologia , Oceanos e Mares , Fitoplâncton/fisiologia , Zooplâncton/fisiologia , Animais , Biomassa , Carbono , Clorofila , Modelos Biológicos , Nutrientes , Plâncton/fisiologia , Imagens de Satélites
11.
Environ Microbiol ; 19(3): 1077-1090, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27871126

RESUMO

Sunlight can be directly harvested by photoheterotrophic bacteria to create a pH gradient across the membrane, which can then be utilized to produce ATP. Despite the potential importance of this trophic strategy, when and where such organisms are found in the seas and oceans is poorly described. Here, we describe the abundance and taxonomy of bacteria with different trophic strategies (heterotrophs, phototrophs and photoheterotrophs) in contrasting water masses of the ultra-oligotrophic eastern Mediterranean Sea. These water bodies, an anticyclonic eddy and a high-chlorophyll patch resulting from transport of nutrient-rich coastal waters into offshore oligotrophic waters, each supported different microbial populations in surface waters. Based on infrared microscopy and metagenomics, aerobic anoxygenic photoheterotrophic (AAP) bacteria represented up to 10.4% of the microbial community. In contrast, the proteorhodopsin (PR) gene was found in 78.6%-118.8% of the bacterial genome equivalents, the highest abundance reported to date. These results suggest that PR-mediated photoheterotrophy may be especially important in oligotrophic, potentially phosphate-limited conditions.


Assuntos
Bactérias/genética , Rodopsinas Microbianas/genética , Bactérias Aeróbias/genética , Genes Bacterianos , Mar Mediterrâneo , Metagenômica , Água do Mar/microbiologia
12.
Proc Natl Acad Sci U S A ; 112(21): 6643-7, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25964340

RESUMO

Marine viruses constitute a major ecological and evolutionary driving force in the marine ecosystems. However, their dispersal mechanisms remain underexplored. Here we follow the dynamics of Emiliania huxleyi viruses (EhV) that infect the ubiquitous, bloom-forming phytoplankton E. huxleyi and show that EhV are emitted to the atmosphere as primary marine aerosols. Using a laboratory-based setup, we showed that the dynamic of EhV aerial emission is strongly coupled to the host-virus dynamic in the culture media. In addition, we recovered EhV DNA from atmospheric samples collected over an E. huxleyi bloom in the North Atlantic, providing evidence for aerosolization of marine viruses in their natural environment. Decay rate analysis in the laboratory revealed that aerosolized viruses can remain infective under meteorological conditions prevailing during E. huxleyi blooms in the ocean, allowing potential dispersal and infectivity over hundreds of kilometers. Based on the combined laboratory and in situ findings, we propose that atmospheric transport of EhV is an effective transmission mechanism for spreading viral infection over large areas in the ocean. This transmission mechanism may also have an important ecological impact on the large-scale host-virus "arms race" during bloom succession and consequently the turnover of carbon in the ocean.


Assuntos
Haptófitas/virologia , Phycodnaviridae/patogenicidade , Fitoplâncton/virologia , Aerossóis , Microbiologia do Ar , DNA Viral/genética , DNA Viral/isolamento & purificação , Ecossistema , Eutrofização , Genes Virais , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Fosfoglicerato Mutase/genética , Phycodnaviridae/genética , Phycodnaviridae/isolamento & purificação , Filogenia , Água do Mar/microbiologia , Água do Mar/virologia , Proteínas Virais/genética
13.
Sci Total Environ ; 499: 311-8, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25201818

RESUMO

Marine aerosols, that are very common in the highly populated coastal cities and communities, may contain biological constituents. Some of this biological fraction of marine aerosols, such as cyanobacteria and plankton debris, may influence human health by inflammation and allergic reactions when inhaled. In this study we identify and compare sources for endotoxins sampled on filters in an on-shore and more-inland site. Filter analysis included endotoxin content, total bacteria, gram-negative bacteria and cyanobacteria genome concentrations as well as ion content in order to identify possible sources for the endotoxins. Satellite images of chlorophyll-a levels and back trajectory analysis were used to further study the cyanobacteria blooms in the sea, close to the trajectory of the sampled air. The highest endotoxin concentrations found in the shoreline site were during winter (3.23±0.17 EU/m(3)), together with the highest cyanobacteria genome (1065.5 genome/m(3)). The elevated endotoxin concentrations were significantly correlated with cyanobacterial levels scaled to the presence of marine aerosol (r=0.90), as well as to chlorophyll-a (r=0.96). Filters sampled further inland showed lower and non-significant correlation between endotoxin and cyanobacteria (r=0.70, P value=0.19), suggesting decrease in marine-originated endotoxin, with possible contributions from other sources of gram-negative non-cyanobacteria. We conclude that marine cyanobacteria may be a dominant contributor to elevated endotoxin levels in coastal areas.


Assuntos
Aerossóis/análise , Microbiologia do Ar , Poluentes Atmosféricos/análise , Endotoxinas/análise , Monitoramento Ambiental , Poluição do Ar/estatística & dados numéricos
14.
Curr Biol ; 24(17): 2041-6, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25155511

RESUMO

Phytoplankton blooms are ephemeral events of exceptionally high primary productivity that regulate the flux of carbon across marine food webs [1-3]. Quantification of bloom turnover [4] is limited by a fundamental difficulty to decouple between physical and biological processes as observed by ocean color satellite data. This limitation hinders the quantification of bloom demise and its regulation by biological processes [5, 6], which has important consequences on the efficiency of the biological pump of carbon to the deep ocean [7-9]. Here, we address this challenge and quantify algal blooms' turnover using a combination of satellite and in situ data, which allows identification of a relatively stable oceanic patch that is subject to little mixing with its surroundings. Using a newly developed multisatellite Lagrangian diagnostic, we decouple the contributions of physical and biological processes, allowing quantification of a complete life cycle of a mesoscale (∼10-100 km) bloom of coccolithophores in the North Atlantic, from exponential growth to its rapid demise. We estimate the amount of organic carbon produced during the bloom to be in the order of 24,000 tons, of which two-thirds were turned over within 1 week. Complimentary in situ measurements of the same patch area revealed high levels of specific viruses infecting coccolithophore cells, therefore pointing at the importance of viral infection as a possible mortality agent. Application of the newly developed satellite-based approaches opens the way for large-scale quantification of the impact of diverse environmental stresses on the fate of phytoplankton blooms and derived carbon in the ocean.


Assuntos
Eutrofização , Haptófitas/virologia , Fitoplâncton/virologia , Fenômenos Fisiológicos Virais , Oceano Atlântico , Haptófitas/fisiologia , Fitoplâncton/fisiologia , Tecnologia de Sensoriamento Remoto , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...